Concurrent degradation of tetrabromobisphenol A by Ochrobactrum sp. T under aerobic condition and estrogenic transition during these processes.

نویسندگان

  • Lei Zu
  • Jukun Xiong
  • Guiying Li
  • Yanjun Fang
  • Taicheng An
چکیده

The effect of concurrent degradation of tetrabromobisphenol A (TBBPA) by the strain Ochrobactrum sp. T under aerobic condition was investigated. The results demonstrated that four extra energy source-addition systems still followed pseudo-first order kinetics. The addition of ethanol or glucose could promote the biodegradation ability of Ochrobactrum sp. T to TBBPA, and 90.1 percent and 77.5 percent of TBBPA (5mg L(-1)) could be removed with corresponding TBBPA half-lives of 26 and 36h, respectively, after 96h reaction. Comparatively, the degradation efficiency of the sole TBBPA system was only 72.9 percent under the same condition. In contrast, two other co-substrates 2,4,6-tribromophenol (TBP) and bisphenol A (BPA) showed a negative effect on the TBBPA biodegradation, and the degradation efficiencies of TBBPA were achieved as 44.7 percent and 67.4 percent, respectively. For the TBBPA+TBP system, the competitive inhibition for the TBBPA debromination was less than the inhibition of the toxicity to the bacterium. While for the TBBPA+BPA system, the degradation of TBBPA could be promoted at the beginning of the reaction, and was then inhibited slightly with further prolonging of reaction time. This is probably due to the substrates being oxidized, and BPA can consume partial oxygen and provide the electrons during the concurrent biodegradation process. In addition, although higher estrogenic activity could be detected for the debrominated intermediates in TBBPA co-degradation process than the original TBBPA, the estrogenicity of the whole system still decreased finally after 96h degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft Genome Sequence of a Tetrabromobisphenol A–Degrading Strain, Ochrobactrum sp. T, Isolated from an Electronic Waste Recycling Site

Ochrobactrum sp. T was previously isolated from a sludge sample collected from an electronic waste recycling site and characterized as a unique tetrabromobisphenol A (TBBPA)-degrading bacterium. Here, the draft genome sequence (3.9 Mb) of Ochrobactrum sp. T is reported to provide insights into its diversity and its TBBPA biodegradation mechanism in polluted environments.

متن کامل

Optimization study of 2-hydroxyquinoxaline (2-HQ) biodegradation by Ochrobactrum sp. HQ1

A novel aerobic gram-negative bacterial strain capable of utilizing 2-hydroxyquinoxaline (2-HQ) as sole source of carbon and energy was isolated from Indian agricultural soil and named as HQ1. Strain HQ1 was identified as Ochrobactrum sp. on the basis of morphology, physico-biochemical characteristics and 16S rRNA sequence analysis. The generation time of Ochrobactrum sp. HQ1 on 2-HQ at log pha...

متن کامل

Involvement of coenzyme M during aerobic biodegradation of vinyl chloride and ethene by Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD.

The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.

متن کامل

Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A.

Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contam...

متن کامل

Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain.

Two strains named ESC1(T) and ESC5 were isolated from nodules of Cytisus scoparius growing in a Spanish soil. Phylogenetic analysis of the 16S rRNA gene showed that these strains belong to the genus Ochrobactrum, their closest relatives being Ochrobactrum anthropi and Ochrobactrum lupini, with 100 and 99.9 % similarity to the respective type strains. Despite this high similarity, the results of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ecotoxicology and environmental safety

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2014